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Abstract

This paper investigates deep learning approaches for
image-based geolocation, the task of predicting a location’s
latitude and longitude from a single image. A baseline was
established using a ResNet50 convolutional neural network
adapted for regression and pre-trained on ImageNet. The
ResNet50 was subsequently replaced with a Vision Trans-
former (ViT) backbone, trained with Supervised Contrastive
Loss to better capture global visual cues relevant to geog-
raphy. The contrastive supervision is based on S2 cell IDs,
which treat images within the same geographic cell as a sin-
gle class. Building on this, a novel two-stage ViT architec-
ture was developed. The first stage classifies an image into
a coarse geographic region using Supervised Contrastive
learning based on S2 cells. The second stage refines the
prediction by training with Triplet Margin Loss.

Models were trained on the OpenStreetView-5SM dataset
[1)] and evaluated on its test split. Experimental results
show a clear progression, with the ViT model significantly
outperforming the ResNet50 baseline and the two-stage ViT
further showed mixed results, which improved precision for
continuous landscapes like Europe but underperformed for
regions such as North America. This research highlights the
effectiveness and ineffectiveness of a coarse-to-fine learn-
ing strategy and demonstrates the potential of transformer-
based architectures for global-scale image geolocation.

1. Introduction

This project aims to develop a deep learning model that
predicts the geographic location of a scene from a single
input image. This task, known as image-based geolocation,
holds practical importance for environmental monitoring,
cultural heritage preservation, and interactive mapping.

The input of the models is a single RGB image from
the OpenStreetView-5M dataset [1], depicting a street-level
scene. The output is a predicted pair of geographic coordi-
nates. To address this problem, the modeling approach was
progressively refined through four architectures:

1. ResNet50 CNN |[14]: A baseline was established us-
ing a ResNet50 Convolutional Neural Network (CNN)
for regression [[12].

2. Vision Transformer (ViT) [13]: To better capture
long-range spatial relationships, the CNN was re-
placed with a Vision Transformer, which processes im-
ages in a way that captures global context more effec-
tively.

3. Two-Stage ViT: A novel two-stage architecture was
designed to decompose the problem into a coarse
classification task followed by fine-grained regression
based on distances, leading to a substantial boost in
geolocation accuracy.

4. Multi-Stage ViT: Aim to address limited VRAM
while still leveraging the strengths of supervised con-
trastive loss, which is known to perform better with
larger batch sizes. Due to its exploratory nature, the
details are provided in the Appendix. Despite its ex-
perimental status, this model achieved the best infer-
ence performance among all the models listed here.

Experimental results show a clear progression, with the
ViT model significantly outperforming the ResNet50 base-
line and the two-stage ViT further showed mixed results
compared with the single-stage ViT, which improved pre-
cision for continuous landscapes like Europe but underper-
formed for regions such as North America.

2. Related Work

Image geolocation has been approached from several an-
gles in the past.

2.1. Image Retrieval and Matching

Early work like IM2GPS [2] pioneered geolocation by
using k-nearest-neighbor search on hand-crafted visual fea-
tures across a large, geotagged database. Subsequent re-
search refined this retrieval-based strategy but remained
limited by the need for dense reference imagery and com-
putationally expensive matching. These scalability issues



prompted a shift toward more constrained settings, such as
specific cities [[6] or landscapes [9], highlighting the limits
of retrieval-based methods at a global scale.

2.2. Classification-Based Approaches

PlaNet [3] framed geolocation as a classification prob-
lem by dividing the Earth’s surface into thousands of dis-
crete S2 cells [15] and training a CNN to predict the correct
cell for an image. This approach achieved significant im-
provements over retrieval methods but was limited by its
coarse granularity, as it could not provide precise coordi-
nates within a cell. Its reliance on a fixed grid also led to
inconsistent performance across regions with varying data
density.

2.3. Transformer-Based Geolocation

A major advancement came with PIGEON [4]], which
uses a pretrained Vision Transformer (ViT) to map images
to locations on a 3D globe. By predicting a probability
distribution over hierarchical GeoCells, PIGEON enables
coarse-to-fine localization and can estimate continuous co-
ordinates. It achieves state-of-the-art performance, capable
of placing over 40% of its predictions within 25 km of the
target.

3. Methods
3.1. S2 Cell Partitioning

To structure the geolocation task for supervised con-
trastive learning, the OpenStreetView-5M dataset [1] was
partitioned using Google’s S2 geometry library [[15]. This
library divides the Earth’s surface into a quadtree of hier-
archical, non-overlapping cells. S2 cell level 6 was used
when training on 500,000 images, and level 7 was used for
the one million image dataset, balancing spatial granularity
with data density. Each image was assigned a class label
corresponding to its S2 cell (with levels ranging from 3 to
14), providing the discrete labels required for contrastive
learning. This information was saved as a CSV file for use
during training, See Figure[T]

3.2. Model Architectures

The initial approach used a pretrained ResNet50 model
as a feature extraction backbone. The final fully-connected
layer was replaced with an identity layer, and a new two-
layer MLP projection head was attached to produce a nor-
malized 256-dimensional embedding vector for each image.
For regularization, a ReLU activation and a dropout layer
(rate=0.3) were included.The model was trained using Su-
pervised Contrastive Loss, which encourages embeddings
of images from the same S2 cell (positive pairs) to be closer
than embeddings from different S2 cells (negative pairs).
During training, layers 3 and 4 of the ResNet50 backbone
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Figure 1. Example of S2 Cells (green cells) partitioning at level 6
with 500K randomly sampled images.

were unfrozen, resulting in approximately 24 million learn-
able parameters.

The second model replaced the ResNet50 backbone with
a Vision Transformer (ViT-B/16). While CNNs excel at lo-
cal patterns, ViTs use self-attention to assess the relation-
ship between image patches, enabling them to capture long-
range dependencies and global context more effectively. A
similar projection head was attached to the ViT backbone
to produce geo-embeddings. The model was trained using
the same Supervised Contrastive Loss, allowing for a direct
comparison between CNN and Transformer architectures.
The last 4 of the 12 encoder blocks were unfrozen during
training, resulting in approximately 29 million learnable pa-
rameters.

Lastly, the third architecture is a two-stage, coarse-to-
fine ViT. This approach first learns a coarse mapping and
then fine-tunes the embedding space to be aware of contin-
uous real-world distances.

Stage 1: Coarse Location Classification. This stage is
identical to the second model. A ViT is trained with
Supervised Contrastive Loss [16] using S2 cell IDs as
labels, creating an embedding space where images are
clustered by coarse geographical region.

Stage 2: Fine-Tuning with Distance-Aware Triplet Loss.
After Stage 1, the model can group images into regions
but does not understand that some regions are neigh-
bors while others are on opposite sides of the planet.



Stage 2 teaches the model this concept of continuous
distance. The model from Stage 1 is further fine-tuned
using Triplet Margin Loss. Crucially, S2 cell labels
are ignored, and real-world geographic coordinates
are used to form triplets within each batch: an anchor
image, a positive image (geographically closest to the
anchor image), and a negative image (geographically
farthest to the anchor image).

The loss function then pushes the model to ensure that
the distance between the anchor and positive embed-
dings is smaller than the distance to the negative em-
bedding by a given margin. This approach is an im-
plementation of "haversine smoothing,” from PIGEON
[4] which aims to make the model aware of the geo-
graphic proximity of its output classes.

Lastly, a final regression head can be trained on this
distance-aware embedding space to predict precise co-
ordinates.

3.3. Loss Functions
3.3.1 Supervised Contrastive Loss [16]

I mainly used the Supervised Contrastive when training the
models. This loss function encourages the embeddings of
images from the same S2 cell to be closer together (posi-
tive pair) than the embedding of images from different S2
cells (negative pairs). Each S2 cell ID is treated as a la-
bel, so this loss function clusters together images from the
same geographic region (S2 cell), making it ideal for learn-
ing meaningful geo-aware image embeddings.
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For each image embedding in a batch (the ”anchor”), this
loss contrasts it with all other embeddings. The numerator
is the sum of similarities between the anchor and all ”’pos-
itive” embeddings (those from the same S2 cell). The de-
nominator is the sum of similarities between the anchor and
all embeddings in the batch. By maximizing this fraction,
the loss pulls embeddings from the same S2 cell together
while simultaneously pushing them apart from the embed-
dings of all other cells.

3.3.2 Triplet Margin Loss [17]

In the second stage of Model 3, Triplet Margin Loss was
used. The loss is defined as:

Liripter = max (|leq — epl3 — llea — en |3 +m,0) (2)

Here, triplets are formed using geographic coordinates: an
anchor (e,), a geographically close positive (ep), and a dis-
tant negative (e,,). The loss function’s goal is to ensure the

squared Euclidean distance between the anchor and posi-
tive embeddings is smaller than the distance to the negative
by at least a margin m (set to 0.2). This process forces the
embedding space to reorganize itself into a continuous map
where embedding distance correlates with geographic dis-
tance, overcoming the artificial boundaries of S2 cells.

Training and Validation Loss vs. Epoch
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Figure 2. Traning and validation loss v.s epoch of the three mod-
els. ResNet50 (top), ViT single-stage (middle), ViT two-stages
(bottom). The loss function of ResNet50 started to show a sign of
overfitting around epochs 10.

3.4. Geo-Embedding Database Creation

In order to effectively compute inference, a pre-
computed database of the reference embedding vectors is
required, as the inference stage will perform K-NN look-
ups on this database.



After training, one million embedding vectors were gen-
erated for the training images (same amount as the training
dataset). These embeddings, along with their ground-truth
S2 labels and coordinates, were stored in a FAISS (Face-
book AI Similarity Search) index for efficient similar-
ity search.

3.5. Inference with K-Nearest Neighbors

The inference stage process predicts the location of
a query image from the test set by leveraging the pre-
computed reference embedding database. The process con-
sists of three main steps:

» Step 1: For each batch of the test images, generate a
corresponding batch of embedding vectors using the
same trained model.

e Step 2: A query embedding vector within the batch
is then used to search against the reference database
using the FAISS index [[18]]. This search retrieves the
top-k nearest neighbours, which are the reference em-
bedding vectors from the training set that are most sim-
ilar to the query embedding.

e Step 3: Lastly, compute the predicted lat/long of
the query embedding. I use different algorithms to
compute the final latlng, such as top-1 neighbor, and
weighted geographic mean by averaging the location
of the K selected neighbors.

4. Dataset and Features

The models were trained and evaluated on subsets of
the OpenStreetView-5M (OSV-5M) dataset [1]], a large-
scale collection of street-level imagery. Due to compu-
tational constraints, randomly sampled subsets were used
while maintaining geographic diversity.

4.1. Dataset and Split Sizes

Two main subsets were created:

* A 500,000-image subset for the initial ResNet50 base-
line model.

* A 1-million-image subset for the more complex Vi-
sion Transformer models.

Each subset was split 80/20 into training and validation sets.
A separate, non-overlapping set of images was reserved for
final testing.

4.2. Data Preprocessing and Augmentation

All images underwent a standardized preprocessing
pipeline. They were resized to 224x224 pixels and normal-
ized using the standard ImageNet mean and standard devi-
ation. No data augmentation (e.g., random flipping, color

jittering) was applied, as such transformations could mis-
lead the model by altering important geographic indicators,
such as which side of the road vehicles drive on.
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Figure 3. Example of input images and its corresponding S2 Cell
label index.

5. Experiments and Results
5.1. Experimental Setup

* Model 1 (ResNet50 Baseline): Trained for 20 epochs
with the Adam optimizer. The top two layers were un-
frozen. Supervised Contrastive Loss was used with a
temperature 7 of 0.07, and batch size of 128.

* Model 2 (ViT Single-Stage): Trained for 15 epochs
with the AdamW optimizer. The top four encoder
blocks were unfrozen. Supervised Contrastive Loss
was used with 7 = 0.07, and batch size of 400.

¢ Model 3 (ViT Two-Stage): Both stages use batch size
of 400.

— Stage 1: Trained for 15 epochs as per Model 2.

— Stage 2: Fine-tuned for 5 epochs using Triplet
Margin Loss with a margin m of 0.2. The last
four encoder blocks remained unfrozen,

For all models, a differential learning rate was used: le-4
for the projection head and 1e-5 for the unfrozen backbone
layers. The ResNet50 model was trained on an L4 GPU,
while ViT models were trained on an A100 GPU.

5.2. Evaluation Metrics

Model performance was evaluated using standard geolo-
cation metrics. The great-circle distance between predicted
and true coordinates was calculated. Results are reported as
mean and median error (km), alongside the percentage of
predictions falling within various error radii: 25km, 200km,
750km, and 2500km.



5.3. Results

The models were evaluated on three separate test sets,
each consisting of 1,500 randomly selected images: Global,
Europe-only, and North America-only. Tables [I] 2] and 3]
present the best-K, median, and mean localization errors in
kilometers. Additionally, Tables ] [5] and [§] report the per-
centage of predictions falling within various error radii. The
OpenStreetView-5M model [1]], which represents the cur-
rent state of the art, is used as the baseline for comparison.

On the other hand, figure ] and figure [3 display the ac-
curacy maps of the three models in North America and Eu-
rope. Errors are color-coded based on distance thresholds.
Green indicates errors of 500 km or less, yellow for errors
up to 1500 km, and orange for errors up to 2500 km. Errors
greater than 2500 km are labeled red.

Figure 4. Accuracy map for ResNet50, ViT (single-stage), and ViT
(two-stages), showing the ViT models outperformed the ResNet
model
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Figure 5. Accuracy maps for ResNet50, ViT (single-stage), and
ViT (two-stage) in EU, showing the ViT models outperformed the
ResNet model
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Table 1. Global Test Set: Error Metric:

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 10 4625.30 5784.09
ViT (Single Stage) 1 1628.45 4296.87
ViT (Two-Stage) 1 1567.39 3907.71
OSV5M (Baseline) | N/A 196.12 1726.75

Table 2. Europe-Only Test Set: Error Metrics

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 10 1200.12 2303.76
ViT (Single Stage) 1 648.60 1988.10
ViT (Two-Stage) 1 671.56 1755.32
OSV5M (Baseline) | N/A 61.98 592.88

Table 3. North America-Only Test Set: Error Metrics

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 1 2616.33 4718.30
ViT (Single Stage) 1 1338.02 3284.21
ViT (Two-Stage) 1 1594.37 3868.25
OSV5M (Baseline) | N/A 256.73 1471.77

Table 4. Global Test Set: Accuracy Metrics

Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 0.00 8.20 31.40
ViT (Single Stage) 7.13 38.73 55.93
ViT (Two-Stage) 9.00 38.60 58.27
OSV5M (Baseline) 16.6 69.33 83.27
Table 5. Europe-Only Test Set: Accuracy Metrics
Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 0.13 28.60 74.73
ViT (Single Stage) 8.67 53.73 84.07
ViT (Two-Stage) 9.33 52.87 86.40
OSV5M (Baseline) 32.33 85.00 95.87
Table 6. North America-Only Test Set: Accuracy Metrics
Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 0.27 14.60 48.47
ViT (Single Stage) 6.80 37.47 64.60
ViT (Two-Stage) 7.20 36.60 60.07
OSV5M (Baseline) 16.53 69.60 86.73




5.4. Discussion

Unfortunately, our models did not outperform the state-
of-the-art OSV-5M baseline. However, the comparison
among the three proposed models clearly demonstrates a
notable performance improvement as the model architec-
ture and training strategy became more sophisticated. The
results also highlight that model performance varies de-
pending on the geographic scope of the test set.

ResNet50 vs. ViT: The shift from a CNN to a ViT
yielded a dramatic improvement. On the global set, the ViT
reduced the median error by nearly 3,000 km, supporting
the hypothesis that a ViT’s global self-attention mechanism
is better suited for capturing the wide-ranging visual cues
required for geolocation.

Effectiveness of the Two-Stage Model: The two-stage
ViT showed insightful, mixed performance. It offered a
modest improvement on the global test set. It reduced the
median error of single-stage ViT by 61 km, and +2% in-
crease on accuracy within 25 km error radii.

Limitations of the Two-Stage Model: Overall, it
seems the two-stage model underperformed compared to
the single-stage ViT on the North America test set. The
hypothesis of this result is that the ’haversine smoothing”
process [4], while beneficial for Europe’s denser and more
continuous visual landscape, may have been detrimental for
North America. By imposing geographic smoothness, the
model might have been forced to ’smear” well-defined vi-
sual clusters from Stage 1 to satisfy the distance constraint,
reducing certainty in less-dense regions.

6. Conclusion and Future Work

This paper explored image-based geolocation through a
series of increasingly sophisticated deep learning models.
This work confirms two key findings. First, the archi-
tectural shift from a CNN to a Vision Transformer (ViT)
yields a substantial performance improvement, confirming
that the global self-attention mechanism is better suited for
capturing geographic cues than a standard convolutional
approach. Second, a novel two-stage, coarse-to-fine ViT ar-
chitecture demonstrates a more complex, region-dependent
performance. Its performance degrades in regions like
North America compared to the single-stage ViT. This
suggests that the distance-aware fine-tuning in Stage 2,
while powerful, is not universally applicable and may
require further fine-tuning and adjustments.

Future work could explore several promising improve-
ments:

* Dynamic Data Partitioning: The use of static S2
cells is a limitation, as data-sparse regions are disad-
vantaged by contrastive loss. Partitioning data using
natural boundaries, such as rivers or mountain ranges,

could encode more meaningful geological informa-
tion.

* Advanced Distance-Aware Loss: The current Triplet
Loss implementation uses only the single closest and
farthest samples. A more advanced loss function that
considers multiple samples at varying distances or di-
rectly incorporates Haversine distances could create
a more accurate embedding space and potentially re-
solve the under-performance in North America.

* Hyperparameter Optimization: Due to computa-
tional constraints, extensive hyperparameter tuning
was not feasible. Further optimization of learning
rates, the number of unfrozen layers, weight decay, and
contrastive temperature could yield additional perfor-
mance gains.

A. Appendix

In addition to the three models listed above, I also trained
a large Vision Transformer (‘google/vit-large-patch16-224-
in21k*) on the full 5 million image dataset, equivalent to ap-
proximately two epochs of training. Due to hardware con-
straints of a single 16GB GPU, I employed several strate-
gies to enable training.

A.1. Training Strategy and Rationale

This approach was designed to overcome limited VRAM
while leveraging the benefits of supervised contrastive loss,
which performs better with larger batch sizes. I used
‘torch.autocast® for mixed-precision training to reduce the
memory footprint.

The core of the strategy was a ’progressive training
schedule”. I began by training all layers with a small batch
size. In subsequent stages, I progressively froze the lower
layers of the network and increased the batch size. This ap-
proach is based on the hypothesis that lower layers of the
ViT can learn low-level geographic features (e.g., S2 cell
level 3) first, while higher layers can be fine-tuned on more
granular, higher-level geographic data with the benefit of
larger, more effective batches.

A.2. Hierarchical Loss Function

A hierarchical supervised contrastive loss function is im-
plemented for this traning, inspired by the work of Weyand
et al. [21]. The total loss is a weighted sum of individ-
ual supervised contrastive losses calculated at different S2
geospatial cell levels. Because S2 cells are organized hier-
archically, this method encourages the model to learn geo-
graphic relationships at multiple scales simultaneously.
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A.3. Staged Training Setup Details

The training was conducted continuously across four dis-
tinct stages, with the model’s weights carried over from one
stage to the next. The specific parameters for each stage are
detailed in Table[7] The initial "warm-up” stage used a com-
bined loss of S2 Cell level 3 Supervised Contrastive Loss
and Haversine distance to stabilize training with a small
batch size.

—— Training Loss
—— Vvalidation Loss
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Figure 6. The loss curve of training and validation v.s folder

Stage | Data Used | Layers Unfrozen | Batch Size | Loss Configuration (Levels & Weights factors)
1 10 folders All (24) 16 S2Cell L3 + Haversine Distance

2 97 folders Top 12 128 S2Cell L3, L4, L5: [1,0.3,0.05]

3 30 folders Top 7 256 S2Cell L3-L6: [1,0.3,0.1,0.03]

4 60 folders Top 1 1024 S2Cell L3-L6: [0.8,0.35,0.15,0.05]

Table 7. Progressive training schedule for the ViT-Large model.
”Folders” refers to subsets of the SM image dataset, each contain-
ing 50k images.

A 4. Staged Training Results

The following tables show the inference results for this
multi-stage ViT large model using the same random Global,
Europe-only, NA-only test sets.

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 (Baseline) 10 4625.30 5784.09
ViT (Single Stage) 1 1628.45 4296.87
ViT (Two-Stage) 1 1567.39 3907.71
ViT-Large (Multi-Stage) 1 1071.67 3115.58

Table 8. Global Test Set: Error Metrics

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 (Baseline) 10 1200.12 2303.76
ViT (Single Stage) 1 648.60 1988.10
ViT (Two-Stage) 1 671.56 1755.32
ViT-Large (Multi-Stage) 10 418.32 1047.86

Table 9. EU Test Set: Error Metrics

Model Best k | Median Error (km) | Mean Error (km)
ResNet50 (Baseline) 1 2616.33 4718.30
ViT (Single Stage) 1 1338.02 3284.21
ViT (Two-Stage) 1 1594.37 3868.25
ViT-Large (Multi-Stage) 1 917.57 2756.05

Table 10. NA Test Set: Error Metrics

Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 (Baseline) 0.00 8.20 31.40
ViT (Single Stage) 7.13 38.73 55.93
ViT (Two-Stage) 9.00 38.60 58.27
ViT-Large (Multi-Stage) 3.33 42.80 68.13
Table 11. Global Test Set: Accuracy Metrics
Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 (Baseline) 0.13 28.60 74.73
ViT (Single Stage) 8.67 53.73 84.07
ViT (Two-Stage) 9.33 52.87 86.40
ViT-Large (Multi-Stage) 1.67 68.70 91.50
Table 12. EU Test Set: Accuracy Metrics
Model Acc@25km (%) | Acc@750km (%) | Acc@2500km (%)
ResNet50 (Baseline) 0.27 14.60 48.47
ViT (Single Stage) 6.80 37.47 64.60
ViT (Two-Stage) 7.20 36.60 60.07
ViT-Large (Multi-Stage) 2.47 44.27 72.27

Table 13. EU Test Set: Accuracy Metrics

B. Conclusion

Building on the three baseline models presented in the
paper, I developed a more advanced pipeline that leverages
a Vision Transformer (ViT) combined with a hierarchical
supervised contrastive loss. This enhanced model achieved
superior performance compared to the other variants, in-
cluding ResNet50, single-stage ViT, and two-stage ViT.
These results highlight a promising direction for improv-
ing geolocation accuracy through more structured training
strategies.

Future work could focus on further reducing localization
error by investigating deeper or more specialized model ar-
chitectures, improving the geocell partitioning strategy, and
employing more effective loss functions.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

Astruc, G., Dufour, N., Siglidis, 1., Aronssohn, C.,
Bouia, N., Fu, S., Loiseau, R., Nguyen, V. N., Raude,
C., Vincent, E., Xu, L., Zhou, H., & Landrieu, L.
(n.d.). OpenStreetView-5M: The Many Roads to
Global Visual Geolocation In https://osvbm.
github.iol 2024

J. Hays and A. A. Efros. IM2GPS: Estimating Geo-
graphic Information from a Single Image. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

T. Weyand, 1. Kostrikov, and J. Philbin. PlaNet - Photo
Geolocation with Convolutional Neural Networks. In
Proceedings of the European Conference on Com-
puter Vision (ECCV), 2016.

PIGEON: Predicting Image Geolocations. https:
//arxiv.orqg/pdf/2307.05845, accessed on
[June 4, 2025].

N. Vo and J. Hays. Revisiting IM2GPS in the Deep
Learning Era. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2017.

Wu, M., & Huang, Q. (2022). IM2City: Image
Geo-localization via Multi-modal Learning. In Pro-
ceedings of the 5th ACM SIGSPATIAL International
Workshop on Al for Geographic Knowledge Discovery
(GeoAl 22), pp. 50-61. https://dl.acm.org/
do1/10.1145/3557918.3565868, accessed on
[June 4, 2025].

Zamir, A. R., & Shah, M. (2010). Accurate Im-
age Localization Based on Google Maps Street View.
In Daniilidis, K., Maragos, P., & Paragios, N.
(Eds.), Computer Vision — ECCV 2010, pp. 255-268.
Springer, Berlin, Heidelberg. ISBN 978-3-642-15561-
1.

Suresh, S., Chodosh, N., & Abello, M. (2018).
DeepGeo: Photo Localization with Deep Neural
Network. https://arxiv.org/abs/1810.
03077, accessed on [June 4, 2025].

Baatz, G., Saurer, O., Koser, K., & Pollefeys, M.
(2012). Large Scale Visual Geo-Localization of Im-
ages in Mountainous Terrain. In Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., & Schmid, C.
(Eds.), Computer Vision — ECCV 2012, pp. 517-530.
Springer, Berlin, Heidelberg. ISBN 978-3-642-33709-
3.

[10]

[11]

[12]

[15]

Tzeng, E., Zhai, A., Clements, M., Townshend, R., &
Zakhor, A. (2013). User-Driven Geolocation of Un-
tagged Desert Imagery Using Digital Elevation Mod-
els. In 2013 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 237-244. doi:
10.1109/CVPRW.2013.42.

Cao, L., Smith, J. R., Wen, Z., Yin, Z., Jin, X., & Han,
J. (2012). BlueFinder: Estimate Where a Beach Photo
Was Taken. In Proceedings of the 21st International
Conference on World Wide Web, WWW ’12 Compan-
ion, pp. 469—470. Association for Computing Machin-
ery, New York, NY, USA. ISBN 9781450312301. doi:
10.1145/2187980.2188081. https://doi.
org/10.1145/2187980.2188081) accessed on
[June 4, 2025].

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. In Pereira, F., Burges, C., Bottou,
L., & Weinberger, K. (Eds.), Advances in Neural
Information Processing Systems, Vol. 25. Curran
Associates, Inc. https://proceedings.
neurips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Pager.

pdf, accessed on [June 4, 2025].

Kolesnikov, A., Dosovitskiy, A., Weissenborn, D.,
Heigold, G., Uszkoreit, J., Beyer, L., Minderer,
M., Dehghani, M., Houlsby, N., Gelly, S., Un-
terthiner, T., & Zhai, X. (2021). An Image is Worth
16x16 Words: Transformers for Image Recogni-
tion at Scale. https://arxiv.org/abs/2010.
11929, accessed on [June 4, 2025].

He, K., Zhang, X., Ren, S., & Sun, J. (2016).
Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.
770-778. https://doi.org/10.1109/CVPR.
2016.90, accessed on [June 4, 2025].

Google S2 Geometry Library. S2Cell Hierarchical
Spatial Indexing. https://s2geometry.io/}
accessed on [June 4, 2025].

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian,
Y., Isola, P., Maschinot, A., Liu, C., & Krishnan, D.
(2020). Supervised Contrastive Learning. In Advances
in Neural Information Processing Systems (NeurIPS),
Vol. 33, pp. 18661-18673. https://arxiv.org/
abs/2004.11362, accessed on [June 4, 2025].

Hoffer, E., & Ailon, N. (2015). Deep Metric Learn-
ing Using Triplet Network. In International Workshop
on Similarity-Based Pattern Recognition (SIMBAD),


https://osv5m.github.io
https://osv5m.github.io
https://arxiv.org/pdf/2307.05845
https://arxiv.org/pdf/2307.05845
https://dl.acm.org/doi/10.1145/3557918.3565868
https://dl.acm.org/doi/10.1145/3557918.3565868
https://arxiv.org/abs/1810.03077
https://arxiv.org/abs/1810.03077
10.1109/CVPRW.2013.42
10.1145/2187980.2188081
https://doi.org/10.1145/2187980.2188081
https://doi.org/10.1145/2187980.2188081
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://s2geometry.io/
https://arxiv.org/abs/2004.11362
https://arxiv.org/abs/2004.11362

(18]

(19]

[20]

(21]

pp.- 84-92. |https://arxiv.org/abs/1412.
6622, accessed on [June 4, 2025].

Johnson, J., Douze, M., & Jégou, H. (2017). Billion-
scale similarity search with GPUs. In IEEE Transac-
tions on Big Data. https://faiss.ai/, accessed
on [June 4, 2025].

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., &
Fei-Fei, L. (2009). ImageNet: A Large-Scale Hi-
erarchical Image Database. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 248-255. https://www.
image—net .orqg/, accessed on [June 4, 2025].

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Tor-
ralba, A. (2017). Places: A 10 Million Image Database
for Scene Recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 40(6), 1452—
1464. http://places.csail.mit.edu/, ac-
cessed on [June 4, 2025].

GCN4Geo: Graph Convolutional Networks for Ge-
olocation Prediction. https://arxiv.org/
pdf/2204.13207, accessed on [June 4, 2025].

10


https://arxiv.org/abs/1412.6622
https://arxiv.org/abs/1412.6622
https://faiss.ai/
https://www.image-net.org/
https://www.image-net.org/
http://places.csail.mit.edu/
https://arxiv.org/pdf/2204.13207
https://arxiv.org/pdf/2204.13207

